## Stability## External perturbationsSuppose an intervention measure has successfully stopped the spread of an epidemic, and for the moment there are no infected people left. Part of the population is immune due to having contracted the disease, another part is not. At this point, the restrictions due to the intervention measure can be lifted.
But what happens to this situation when there is an
To a degree, this question is related to
## SeedingsCreate the following config file as the baseline epidemic:
Note the seedings and seeding keywords - they allow to define a perturbation in terms of a number of seeds (here 50) which are inserted into the grid at a specified time (here timestep 800) with the transmission fraction of the defined disease. The scenario starts the epidemic and lets it spread, then inserts 50 new infections onto random grid positions at timestep 800. Running this basic scenario infects about 75% of the population before timestep 600, at which point the propagation stops. Inserting the new seeds later causes no visible new outbreak. Now, let's try to stop the spread of the epidemic early by a relatively hard intervention measure. Insert the block
into the scenario and re-run. The epidemic now stops spreading around timestep 200, but produces a violent secondary outbreak around timestep 900 when the seeds grow into substantial outbreaks. Apparently it is highly unstable. Now, let's vary the intervention time from 200 to 400 - you should see something like this:
As the initial outbreak is allowed to grow more, the secondary outbreak gets progressively milder. This is expected - if the first outbreak causes a large fraction of immunity in the population, there is less room for a seconary outbreak. What is perhaps less expected is that the sum of first and second outbreak is usually smaller when an intervention is used than without intervention, and the smallest value is reached when the intervention is done at about half of the number of infected that would be reached without (you can check by varying the random seed and re-running the scenarios that this is no mere quirk).
## ConclusionsIf you try a bit with different mobility parameters and containment strategies, the pattern that emerges is as follows: It is possible to create (relatively) stable distributions of immune people in the grid population due to intervention measures in which in the end less infections occur than without the measures. The degree to which this is possible depends on the randomness of the distributions - the more random the initial spread is and the more flamefront-like the secondary spread is, the less infections are counted in the end. Thus, the prior immunity scenario we've looked earlier was a best-case scenario.
Continue with Disease strains. Back to main index Back to science Back to numerical epidemic Created by Thorsten Renk 2017-2021 - see the disclaimer, privacy statement and contact information. |